www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - p|1+a+a^2+...+a^(p-1)
p|1+a+a^2+...+a^(p-1) < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

p|1+a+a^2+...+a^(p-1): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 Sa 07.05.2011
Autor: Teufel

Aufgabe
Seien p, q Primzahlen >2 und [mm] p|1+a+a^2+...+a^{q-1}. [/mm]
Zeige: Dann gilt [mm] $a\equiv [/mm] 1$ mod p und p=q oder [mm] $a\not= [/mm] 1$ mod p und $p [mm] \equiv [/mm] 1$ mod 2q

Hi!

Den 1. Fall kann ich leicht zeigen, aber beim 2. will mir nichts einfallen.

Sei [mm] p|1+a+a^2+...+a^{q-1} [/mm] und [mm] $a\not= [/mm] 1$ mod p.

Dann ist [mm] $1+a+a^2+...+a^{q-1} \equiv 1+b+...+b^{q-1} \equiv \frac{b^q-1}{b-1} \equiv [/mm] 0$ mod p mit b=a mod p. Aber ich weiß nicht, wie ich jetzt p modulo 2q ins Spiel bringen kann.

Weiß da jemand weiter?

        
Bezug
p|1+a+a^2+...+a^(p-1): Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Sa 07.05.2011
Autor: felixf

Moin!

> Seien p, q Primzahlen >2 und [mm]p|1+a+a^2+...+a^{q-1}.[/mm]
>  Zeige: Dann gilt [mm]a\equiv 1[/mm] mod p und p=q oder [mm]a\not= 1[/mm] mod
> p und [mm]p \equiv 1[/mm] mod 2q
>  Hi!
>  
> Den 1. Fall kann ich leicht zeigen, aber beim 2. will mir
> nichts einfallen.
>  
> Sei [mm]p|1+a+a^2+...+a^{q-1}[/mm] und [mm]a\not= 1[/mm] mod p.
>  
> Dann ist [mm]1+a+a^2+...+a^{q-1} \equiv 1+b+...+b^{q-1} \equiv \frac{b^q-1}{b-1} \equiv 0[/mm]
> mod p mit b=a mod p. Aber ich weiß nicht, wie ich jetzt p
> modulo 2q ins Spiel bringen kann.

Da $a [mm] \not\equiv [/mm] 1 [mm] \pmod{p}$ [/mm] ist, macht [mm] $\frac{a^{q - 1} - 1}{a - 1}$ [/mm] auch modulo $p$ Sinn, und aus [mm] $\frac{a^q - 1}{a - 1} \equiv [/mm] 0 [mm] \pmod{p}$ [/mm] folgt [mm] $a^q \equiv [/mm] 1 [mm] \pmod{p}$. [/mm] Das sagt etwas ueber die Ordnung von $a$ modulo $p$ aus. Was weisst du ueber die Ordnung von $a$ modulo $p$, was muss sie teilen? Kann sie 1 sein?

LG Felix


Bezug
                
Bezug
p|1+a+a^2+...+a^(p-1): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:11 Sa 07.05.2011
Autor: Teufel

Hi!

Danke für die Antwort erst einmal.
Ok, also wenn [mm] $a^q\equiv [/mm] 1$ mod p ist, so muss die Ordnung von a modulo p q teilen, also [mm] ord_p(a)|q. [/mm] Weil q prim ist, muss [mm] ord_p(a)=1 [/mm] oder =q sein. Wegen [mm] $a\not=1$ [/mm] ist [mm] ord_p(a)=q. [/mm]

Meintest du das?

Außerdem gilt noch [mm] ord_p(a)|\varphi(p) \Rightarrow [/mm] $q|p-1$. Weil p,q>2 und p-1 deswegen gerade ist, teilt auch 2q p-1 [mm] \gdw [/mm] $p [mm] \equiv [/mm] 1$ mod 2q.

So, oder?

Vielen Dank (mal wieder)! :)

Bezug
                        
Bezug
p|1+a+a^2+...+a^(p-1): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:13 Sa 07.05.2011
Autor: felixf

Moin!

> Danke für die Antwort erst einmal.
>  Ok, also wenn [mm]a^q\equiv 1[/mm] mod p ist, so muss die Ordnung
> von a modulo p q teilen, also [mm]ord_p(a)|q.[/mm] Weil q prim ist,
> muss [mm]ord_p(a)=1[/mm] oder =q sein. Wegen [mm]a\not=1[/mm] ist
> [mm]ord_p(a)=q.[/mm]
>  
> Meintest du das?

Ja :)

> Außerdem gilt noch [mm]ord_p(a)|\varphi(p) \Rightarrow[/mm]  [mm]q|p-1[/mm].
> Weil p,q>2 und p-1 deswegen gerade ist, teilt auch 2q p-1
> [mm]\gdw[/mm]  [mm]p \equiv 1[/mm] mod 2q.

Genau :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de